Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Variational estimators for the parameters of Gibbs point process models (1307.5971v1)

Published 23 Jul 2013 in math.ST and stat.TH

Abstract: This paper proposes a new estimation technique for fitting parametric Gibbs point process models to a spatial point pattern dataset. The technique is a counterpart, for spatial point processes, of the variational estimators for Markov random fields developed by Almeida and Gidas. The estimator does not require the point process density to be hereditary, so it is applicable to models which do not have a conditional intensity, including models which exhibit geometric regularity or rigidity. The disadvantage is that the intensity parameter cannot be estimated: inference is effectively conditional on the observed number of points. The new procedure is faster and more stable than existing techniques, since it does not require simulation, numerical integration or optimization with respect to the parameters.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.