Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distribution of algebraic numbers (1307.5734v1)

Published 22 Jul 2013 in math.NT

Abstract: Schur studied limits of the arithmetic means $A_n$ of zeros for polynomials of degree $n$ with integer coefficients and simple zeros in the closed unit disk. If the leading coefficients are bounded, Schur proved that $\limsup_{n\to\infty} |A_n| \le 1-\sqrt{e}/2.$ We show that $A_n \to 0$, and estimate the rate of convergence by generalizing the Erd\H{o}s-Tur\'an theorem on the distribution of zeros. As an application, we show that integer polynomials have some unexpected restrictions of growth on the unit disk. Schur also studied problems on means of algebraic numbers on the real line. When all conjugate algebraic numbers are positive, the problem of finding the sharp lower bound for $\liminf_{n\to\infty} A_n$ was developed further by Siegel and others. We provide a solution of this problem for algebraic numbers equidistributed in subsets of the real line. Potential theoretic methods allow us to consider distribution of algebraic numbers in or near general sets in the complex plane. We introduce the generalized Mahler measure, and use it to characterize asymptotic equidistribution of algebraic numbers in arbitrary compact sets of capacity one. The quantitative aspects of this equidistribution are also analyzed in terms of the generalized Mahler measure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.