Inequalities for products of polynomials I (1307.5455v1)
Abstract: We study inequalities connecting the product of uniform norms of polynomials with the norm of their product. This circle of problems include the Gelfond-Mahler inequality for the unit disk and the Kneser-Borwein inequality for the segment $[-1,1]$. Furthermore, the asymptotically sharp constants are known for such inequalities over arbitrary compact sets in the complex plane. It is shown here that this best constant is smallest (namely: 2) for a disk. We also conjecture that it takes its largest value for a segment, among all compact connected sets in the plane.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.