Papers
Topics
Authors
Recent
2000 character limit reached

In-out decomposition of boundary integral equations (1307.3885v2)

Published 15 Jul 2013 in physics.class-ph, nlin.CD, and physics.optics

Abstract: We propose a reformulation of the boundary integral equations for the Helmholtz equation in a domain in terms of incoming and outgoing boundary waves. We obtain transfer operator descriptions which are exact and thus incorporate features such as diffraction and evanescent coupling; these effects are absent in the well known semiclassical transfer operators in the sense of Bogomolny. It has long been established that transfer operators are equivalent to the boundary integral approach within semiclassical approximation. Exact treatments have been restricted to specific boundary conditions (such as Dirichlet or Neumann). The approach we propose is independent of the boundary conditions, and in fact allows one to decouple entirely the problem of propagating waves across the interior from the problem of reflecting waves at the boundary. As an application, we show how the decomposition may be used to calculate Goos-H\"anchen shifts of ray dynamics in billiards with variable boundary conditions and for dielectric cavities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.