Superstrong and other large cardinals are never Laver indestructible (1307.3486v2)
Abstract: Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, \Sigma_n-reflecting cardinals, \Sigma_n-correct cardinals and \Sigma_n-extendible cardinals (all for n>2) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if \kappa\ exhibits any of them, with corresponding target \theta, then in any forcing extension arising from nontrivial strategically <\kappa-closed forcing Q in V_\theta, the cardinal \kappa\ will exhibit none of the large cardinal properties with target \theta\ or larger.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.