On the existence of orders in semisimple Hopf algebras
Abstract: We show that there is a family of complex semisimple Hopf algebras that do not admit a Hopf order over any number ring. They are Drinfel'd twists of certain group algebras. The twist contains a scalar fraction which makes impossible the definability of such Hopf algebras over number rings. We also prove that a complex semisimple Hopf algebra satisfies Kaplansky's sixth conjecture if and only if it admits a weak order, in the sense of Rumynin and Lorenz, over the integers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.