Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the existence of orders in semisimple Hopf algebras

Published 11 Jul 2013 in math.QA, math.RA, and math.RT | (1307.3269v3)

Abstract: We show that there is a family of complex semisimple Hopf algebras that do not admit a Hopf order over any number ring. They are Drinfel'd twists of certain group algebras. The twist contains a scalar fraction which makes impossible the definability of such Hopf algebras over number rings. We also prove that a complex semisimple Hopf algebra satisfies Kaplansky's sixth conjecture if and only if it admits a weak order, in the sense of Rumynin and Lorenz, over the integers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.