Regularity of solutions to quantum master equations: A stochastic approach (1307.1972v1)
Abstract: Applying probabilistic techniques we study regularity properties of quantum master equations (QMEs) in the Lindblad form with unbounded coefficients; a density operator is regular if, roughly speaking, it describes a quantum state with finite energy. Using the linear stochastic Schr\"{o}dinger equation we deduce that solutions of QMEs preserve the regularity of the initial states under a general nonexplosion condition. To this end, we develop the probabilistic representation of QMEs, and we prove the uniqueness of solutions for adjoint quantum master equations. By means of the nonlinear stochastic Schr\"{o}dinger equation, we obtain the existence of regular stationary solutions for QMEs, under a Lyapunov-type condition.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.