A probabilistic weak formulation of mean field games and applications (1307.1152v2)
Abstract: Mean field games are studied by means of the weak formulation of stochastic optimal control. This approach allows the mean field interactions to enter through both state and control processes and take a form which is general enough to include rank and nearest-neighbor effects. Moreover, the data may depend discontinuously on the state variable, and more generally its entire history. Existence and uniqueness results are proven, along with a procedure for identifying and constructing distributed strategies which provide approximate Nash equlibria for finite-player games. Our results are applied to a new class of multi-agent price impact models and a class of flocking models for which we prove existence of equilibria.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.