Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semicircular limits on the free Poisson chaos: counterexamples to a transfer principle (1307.0976v2)

Published 3 Jul 2013 in math.OA and math.PR

Abstract: We establish a class of sufficient conditions, ensuring that a sequence of multiple integrals with respect to a free Poisson measure converges to a semicircular limit. We use this result to construct a set of explicit counterexamples, showing that the transfer principle between classical and free Brownian motions (recently proved by Kemp, Nourdin, Peccati and Speicher (2012)) does not extend to the framework of Poisson measures. Our counterexamples implicitly use kernels appearing in the classical theory of random geometric graphs. Several new results of independent interest are obtained as necessary steps in our analysis, in particular: (i) a multiplication formula for free Poisson multiple integrals, (ii) diagram formulae and spectral bounds for these objects, and (iii) a counterexample to the general universality of the Gaussian Wiener chaos in a classical setting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube