Papers
Topics
Authors
Recent
2000 character limit reached

Tracer diffusion at low temperature in kinetically constrained models

Published 27 Jun 2013 in math.PR, cond-mat.stat-mech, math-ph, and math.MP | (1306.6500v4)

Abstract: We describe the motion of a tracer in an environment given by a kinetically constrained spin model (KCSM) at equilibrium. We check convergence of its trajectory properly rescaled to a Brownian motion and positivity of the diffusion coefficient $D$ as soon as the spectral gap of the environment is positive (which coincides with the ergodicity region under general conditions). Then we study the asymptotic behavior of $D$ when the density $1-q$ of the environment goes to $1$ in two classes of KCSM. For noncooperative models, the diffusion coefficient $D$ scales like a power of $q$, with an exponent that we compute explicitly. In the case of the Fredrickson-Andersen one-spin facilitated model, this proves a prediction made in Jung, Garrahan and Chandler [Phys. Rev. E 69 (2004) 061205]. For the East model, instead we prove that the diffusion coefficient is comparable to the spectral gap, which goes to zero faster than any power of $q$. This result contradicts the prediction of physicists (Jung, Garrahan and Chandler [Phys. Rev. E 69 (2004) 061205; J. Chem. Phys. 123 (2005) 084509]), based on numerical simulations, that suggested $D\sim \operatorname {gap}{\xi}$ with $\xi<1$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.