Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Estimation and Detection with Bounded Transmissions over Gaussian Multiple Access Channels (1306.6116v1)

Published 26 Jun 2013 in cs.DC, cs.IT, and math.IT

Abstract: A distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel is considered. When the sensor measurements are decreasingly reliable as a function of the sensor index, the conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify-and-forward technique and its robustness to impulsive sensing noise distributions is highlighted. In contrast to amplify-and-forward schemes, it is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results.

Citations (13)

Summary

We haven't generated a summary for this paper yet.