No-go theorem for the composition of quantum systems (1306.5805v3)
Abstract: Building on the Pusey-Barrett-Rudolph theorem, we derive a no-go theorem for a vast class of deterministic hidden-variables theories, including those consistent on their targeted domain. The strength of this result throws doubt on seemingly natural assumptions (like the "preparation independence" of the Pusey-Barrett-Rudolph theorem) about how "real states" of subsystems compose for joint systems in nonentangled states. This points to constraints in modeling tensor-product states, similar to constraints demonstrated for more complex states by the Bell and Bell-Kochen-Specker theorems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.