Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

P-HGRMS: A Parallel Hypergraph Based Root Mean Square Algorithm for Image Denoising (1306.5390v2)

Published 23 Jun 2013 in cs.DC and cs.CV

Abstract: This paper presents a parallel Salt and Pepper (SP) noise removal algorithm in a grey level digital image based on the Hypergraph Based Root Mean Square (HGRMS) approach. HGRMS is generic algorithm for identifying noisy pixels in any digital image using a two level hierarchical serial approach. However, for SP noise removal, we reduce this algorithm to a parallel model by introducing a cardinality matrix and an iteration factor, k, which helps us reduce the dependencies in the existing approach. We also observe that the performance of the serial implementation is better on smaller images, but once the threshold is achieved in terms of image resolution, its computational complexity increases drastically. We test P-HGRMS using standard images from the Berkeley Segmentation dataset on NVIDIAs Compute Unified Device Architecture (CUDA) for noise identification and attenuation. We also compare the noise removal efficiency of the proposed algorithm using Peak Signal to Noise Ratio (PSNR) to the existing approach. P-HGRMS maintains the noise removal efficiency and outperforms its sequential counterpart by 6 to 18 times (6x - 18x) in computational efficiency.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.