Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Bounding the norm of a log-concave vector via thin-shell estimates (1306.3696v2)

Published 16 Jun 2013 in math.FA, math.MG, and math.PR

Abstract: Chaining techniques show that if X is an isotropic log-concave random vector in Rn and Gamma is a standard Gaussian vector then E |X| < C n{1/4} E |Gamma| for any norm |*|, where C is a universal constant. Using a completely different argument we establish a similar inequality relying on the thin-shell constant sigma_n = sup ((var|X|){1/2} ; X isotropic and log-concave on Rn). In particular, we show that if the thin-shell conjecture sigma_n = O(1) holds, then n{1/4} can be replaced by log (n) in the inequality. As a consequence, we obtain certain bounds for the mean-width, the dual mean-width and the isotropic constant of an isotropic convex body. In particular, we give an alternative proof of the fact that a positive answer to the thin-shell conjecture implies a positive answer to the slicing problem, up to a logarithmic factor.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.