Hermite spectral method with hyperbolic cross approximations to high-dimensional parabolic PDEs (1306.3207v2)
Abstract: It is well-known that sparse grid algorithm has been widely accepted as an efficient tool to overcome the "curse of dimensionality" in some degree. In this note, we first give the error estimate of hyperbolic cross (HC) approximations with generalized Hermite functions. The exponential convergence in both regular and optimized hyperbolic cross approximations has been shown. Moreover, the error estimate of Hermite spectral method to high-dimensional linear parabolic PDEs with HC approximations has been investigated in the properly weighted Korobov spaces. The numerical result verifies the exponential convergence of this approach.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.