Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Comparison inequalities on Wiener space (1306.2430v1)

Published 11 Jun 2013 in math.PR

Abstract: We define a covariance-type operator on Wiener space: for F and G two random variables in the Gross-Sobolev space $D{1,2}$ of random variables with a square-integrable Malliavin derivative, we let $Gamma_{F,G}=$ where $D$ is the Malliavin derivative operator and $L{-1}$ is the pseudo-inverse of the generator of the Ornstein-Uhlenbeck semigroup. We use $\Gamma$ to extend the notion of covariance and canonical metric for vectors and random fields on Wiener space, and prove corresponding non-Gaussian comparison inequalities on Wiener space, which extend the Sudakov-Fernique result on comparison of expected suprema of Gaussian fields, and the Slepian inequality for functionals of Gaussian vectors. These results are proved using a so-called smart-path method on Wiener space, and are illustrated via various examples. We also illustrate the use of the same method by proving a Sherrington-Kirkpatrick universality result for spin systems in correlated and non-stationary non-Gaussian random media.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.