Papers
Topics
Authors
Recent
Search
2000 character limit reached

Computation of extreme eigenvalues in higher dimensions using block tensor train format

Published 10 Jun 2013 in math.NA, cond-mat.stat-mech, and cond-mat.str-el | (1306.2269v1)

Abstract: We consider an approximate computation of several minimal eigenpairs of large Hermitian matrices which come from high--dimensional problems. We use the tensor train format (TT) for vectors and matrices to overcome the curse of dimensionality and make storage and computational cost feasible. Applying a block version of the TT format to several vectors simultaneously, we compute the low--lying eigenstates of a system by minimization of a block Rayleigh quotient performed in an alternating fashion for all dimensions. For several numerical examples, we compare the proposed method with the deflation approach when the low--lying eigenstates are computed one-by-one, and also with the variational algorithms used in quantum physics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.