Papers
Topics
Authors
Recent
2000 character limit reached

Metric Description of Defects in Amorphous Materials (1306.1624v3)

Published 7 Jun 2013 in cond-mat.mtrl-sci and math.DG

Abstract: Classical elasticity is concerned with bodies that can be modeled as smooth manifolds endowed with a reference metric that represents local equilibrium distances between neighboring material elements. The elastic energy associated with a configuration of a body in classical elasticity is the sum of local contributions that arise from a discrepancy between the actual metric and the reference metric. In contrast, the modeling of defects in solids has traditionally involved extra structure on the material manifold, notably torsion to quantify the density of dislocations and non-metricity to represent the density of point defects. We show that all the classical defects can be described within the framework of classical elasticity using tensor fields that only assume a metric structure. Specifically, bodies with singular defects can be viewed as affine manifolds; both disclinations and dislocations are captured by the monodromy that maps curves that surround the loci of the defects into affine transformations. Finally, we show that two dimensional defects with trivial monodromy are purely local in the sense that if we remove from the manifold a compact set that contains the locus of the defect, the punctured manifold can be isometrically embedded in Euclidean space.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.