Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the category of weak bialgebras (1306.1459v2)

Published 6 Jun 2013 in math.QA

Abstract: Weak (Hopf) bialgebras are described as (Hopf) bimonoids in appropriate duoidal (also known as 2-monoidal) categories. This interpretation is used to define a category wba of weak bialgebras over a given field. As an application, the "free vector space" functor from the category of small categories with finitely many objects to wba is shown to possess a right adjoint, given by taking (certain) group-like elements. This adjunction is proven to restrict to the full subcategories of groupoids and of weak Hopf algebras, respectively. As a corollary, we obtain equivalences between the category of small categories with finitely many objects and the category of pointed cosemisimple weak bialgebras; and between the category of small groupoids with finitely many objects and the category of pointed cosemisimple weak Hopf algebras.

Summary

We haven't generated a summary for this paper yet.