Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graphical Methods for Tannaka Duality of Weak Bialgebras and Weak Hopf Algebras in Arbitrary Braided Monoidal Categories (1110.5542v1)

Published 25 Oct 2011 in math.CT

Abstract: Tannaka Duality describes the relationship between algebraic objects in a given category and their representations; an important case is that of Hopf algebras and their categories of representations; these have strong monoidal forgetful "fibre functors" to the category of vector spaces. We simultaneously generalize the theory of Tannaka duality in two ways: first, we replace Hopf algebras with weak Hopf algebras and strong monoidal functors with separable Frobenius monoidal functors; second, we replace the category of vector spaces with an arbitrary braided monoidal category. To accomplish this goal, we introduce a new graphical notation for functors between monoidal categories, using string diagrams with coloured regions. Not only does this notation extend our capacity to give simple proofs of complicated calculations, it makes plain some of the connections between Frobenius monoidal or separable Frobenius monoidal functors and the topology of the axioms defining certain algebraic structures. Finally, having generalized Tannaka to an arbitrary base category, we briefly discuss the functoriality of the construction as this base is varied.

Summary

We haven't generated a summary for this paper yet.