Papers
Topics
Authors
Recent
Search
2000 character limit reached

Predicting Human Behavior in Unrepeated, Simultaneous-Move Games

Published 4 Jun 2013 in cs.GT | (1306.0918v4)

Abstract: It is common to assume that agents will adopt Nash equilibrium strategies; however, experimental studies have demonstrated that Nash equilibrium is often a poor description of human players' behavior in unrepeated normal-form games. In this paper, we analyze five widely studied models (Quantal Response Equilibrium, Level-k, Cognitive Hierarchy, QLk, and Noisy Introspection) that aim to describe actual, rather than idealized, human behavior in such games. We performed what we believe is the most comprehensive meta-analysis of these models, leveraging ten different data sets from the literature recording human play of two-player games. We began by evaluating the models' generalization or predictive performance, asking how well a model fits unseen test data after having had its parameters calibrated based on separate training data. Surprisingly, we found that what we dub the QLk model of Stahl & Wilson (1994) consistently achieved the best performance. Motivated by this finding, we describe methods for analyzing the posterior distributions over a model's parameters. We found that QLk's parameters were being set to values that were not consistent with their intended economic interpretations. We thus explored variations of QLk, ultimately identifying a new model family that has fewer parameters, gives rise to more parsimonious parameter values, and achieves better predictive performance.

Citations (80)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.