Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KERT: Automatic Extraction and Ranking of Topical Keyphrases from Content-Representative Document Titles (1306.0271v1)

Published 3 Jun 2013 in cs.LG and cs.IR

Abstract: We introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase generation and ranking. By shifting from the unigram-centric traditional methods of unsupervised keyphrase extraction to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. We construct a topical keyphrase ranking function which implements the four criteria that represent high quality topical keyphrases (coverage, purity, phraseness, and completeness). The effectiveness of our approach is demonstrated on two collections of content-representative titles in the domains of Computer Science and Physics.

Citations (14)

Summary

We haven't generated a summary for this paper yet.