Papers
Topics
Authors
Recent
Search
2000 character limit reached

Eigendecomposition of Block Tridiagonal Matrices

Published 2 Jun 2013 in math.SP | (1306.0217v1)

Abstract: Block tridiagonal matrices arise in applied mathematics, physics, and signal processing. Many applications require knowledge of eigenvalues and eigenvectors of block tridiagonal matrices, which can be prohibitively expensive for large matrix sizes. In this paper, we address the problem of the eigendecomposition of block tridiagonal matrices by studying a connection between their eigenvalues and zeros of appropriate matrix polynomials. We use this connection with matrix polynomials to derive a closed-form expression for the eigenvectors of block tridiagonal matrices, which eliminates the need for their direct calculation and can lead to a faster calculation of eigenvalues. We also demonstrate with an example that our work can lead to fast algorithms for the eigenvector expansion for block tridiagonal matrices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.