Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Inpainting by Kriging Interpolation Technique (1306.0139v1)

Published 1 Jun 2013 in cs.CV

Abstract: Image inpainting is the art of predicting damaged regions of an image. The manual way of image inpainting is a time consuming. Therefore, there must be an automatic digital method for image inpainting that recovers the image from the damaged regions. In this paper, a novel statistical image inpainting algorithm based on Kriging interpolation technique was proposed. Kriging technique automatically fills the damaged region in an image using the information available from its surrounding regions in such away that it uses the spatial correlation structure of points inside the k-by-k block. Kriging has the ability to face the challenge of keeping the structure and texture information as the size of damaged region heighten. Experimental results showed that, Kriging has a high PSNR value when recovering a variety of test images from scratches and text as damaged regions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.