Papers
Topics
Authors
Recent
2000 character limit reached

Lyapunov functionals for boundary-driven nonlinear drift-diffusions

Published 31 May 2013 in math.AP, math-ph, math.MP, and math.PR | (1305.7405v1)

Abstract: We exhibit a large class of Lyapunov functionals for nonlinear drift-diffusion equations with non-homogeneous Dirichlet boundary conditions. These are generalizations of large deviation functionals for underlying stochastic many-particle systems, the zero range process and the Ginzburg-Landau dynamics, which we describe briefly. As an application, we prove linear inequalities between such an entropy-like functional and its entropy production functional for the boundary-driven porous medium equation in a bounded domain with positive Dirichlet conditions: this implies exponential rates of relaxation related to the first Dirichlet eigenvalue of the domain. We also derive Lyapunov functions for systems of nonlinear diffusion equations, and for nonlinear Markov processes with non-reversible stationary measures.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.