Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Local and Global Analysis of Parametric Solid Sweeps (1305.7351v1)

Published 31 May 2013 in cs.CG

Abstract: In this work, we propose a detailed computational framework for modelling the envelope of the swept volume, that is the boundary of the volume obtained by sweeping an input solid along a trajectory of rigid motions. Our framework is adapted to the well-established industry-standard brep format to enable its implementation in modern CAD systems. This is achieved via a "local analysis", which covers parametrization and singularities, as well as a "global theory" which tackles face-boundaries, self-intersections and trim curves. Central to the local analysis is the "funnel" which serves as a natural parameter space for the basic surfaces constituting the sweep. The trimming problem is reduced to the problem of surface-surface intersections of these basic surfaces. Based on the complexity of these intersections, we introduce a novel classification of sweeps as either decomposable or non-decomposable. Further, we construct an {\em invariant} function $\theta$ on the funnel which efficiently separates decomposable and non-decomposable sweeps. Through a geometric theorem we also show intimate connections between $\theta$, local curvatures and the inverse trajectory used in earlier works as an approach towards trimming. In contrast to the inverse trajectory approach, $\theta$ is robust and is the key to a complete structural understanding, and an efficient computation of both, the singular locus and the trim curves, which are central to a stable implementation. Several illustrative outputs of a pilot implementation are included.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.