Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interrogation of spline surfaces with application to isogeometric design and analysis of lattice-skin structures (1810.07982v2)

Published 18 Oct 2018 in math.NA, cs.GR, cs.NA, and math.AG

Abstract: A novel surface interrogation technique is proposed to compute the intersection of curves with spline surfaces in isogeometric analysis. The intersection points are determined in one-shot without resorting to a Newton-Raphson iteration or successive refinement. Surface-curve intersection is required in a wide range of applications, including contact, immersed boundary methods and lattice-skin structures, and requires usually the solution of a system of nonlinear equations. It is assumed that the surface is given in form of a spline, such as a NURBS, T-spline or Catmull-Clark subdivision surface, and is convertible into a collection of B\'ezier patches. First, a hierarchical bounding volume tree is used to efficiently identify the B\'ezier patches with a convex-hull intersecting the convex-hull of a given curve segment. For ease of implementation convex-hulls are approximated with k-dops (discrete orientation polytopes). Subsequently, the intersections of the identified B\'ezier patches with the curve segment are determined with a matrix-based implicit representation leading to the computation of a sequence of small singular value decompositions (SVDs). As an application of the developed interrogation technique the isogeometric design and analysis of lattice-skin structures is investigated. The skin is a spline surface that is usually created in a computer-aided design (CAD) system and the periodic lattice to be fitted consists of unit cells, each containing a small number of struts. The lattice-skin structure is generated by projecting selected lattice nodes onto the surface after determining the intersection of unit cell edges with the surface. For mechanical analysis, the skin is modelled as a Kirchhoff-Love thin-shell and the lattice as a pin-jointed truss. The two types of structures are coupled with a standard Lagrange multiplier approach.

Citations (11)

Summary

We haven't generated a summary for this paper yet.