Papers
Topics
Authors
Recent
2000 character limit reached

Adapting the Interrelated Two-way Clustering method for Quantitative Structure-Activity Relationship (QSAR) Modeling of a Diverse Set of Chemical Compounds (1305.7285v1)

Published 31 May 2013 in stat.CO

Abstract: Interrelated Two-way Clustering (ITC) is an unsupervised clustering method developed to divide samples into two groups in gene expression data obtained through microarrays, selecting important genes simultaneously in the process. This has been found to be a better approach than conventional clustering methods like K-means or self-organizing map for the scenarios when number of samples much smaller than number of variables (n<<p). In this paper we used the ITC approach for classification of a diverse set of 508 chemicals regarding mutagenicity. A large number of topological indices (TIs), 3-dimensional, and quantum chemical descriptors, as well as atom pairs (APs) have been used as explanatory variables. In this paper, ITC has been used only for predictor selection, after which ridge regression is employed to build the final predictive model. The proper leave-one-out (LOO) method of cross-validation in this scenario is to take as holdout each of the 508 compounds before predictor thinning and compare the predicted values with the experimental data. ITC based results obtained here are comparable to those developed earlier.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.