Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nearest neighbor Markov dynamics on Macdonald processes

Published 23 May 2013 in math.PR, math-ph, math.CO, math.MP, and math.RT | (1305.5501v1)

Abstract: Macdonald processes are certain probability measures on two-dimensional arrays of interlacing particles introduced by Borodin and Corwin (arXiv:1111.4408 [math.PR]). They are defined in terms of nonnegative specializations of the Macdonald symmetric functions and depend on two parameters (q,t), where 0<= q, t < 1. Our main result is a classification of continuous time, nearest neighbor Markov dynamics on the space of interlacing arrays that act nicely on Macdonald processes. The classification unites known examples of such dynamics and also yields many new ones. When t = 0, one dynamics leads to a new integrable interacting particle system on the one-dimensional lattice, which is a q-deformation of the PushTASEP (= long-range TASEP). When q = t, the Macdonald processes become the Schur processes of Okounkov and Reshetikhin (arXiv:math/0107056 [math.CO]). In this degeneration, we discover new Robinson--Schensted-type correspondences between words and pairs of Young tableaux that govern some of our dynamics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.