Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adaptive Complex Contagions and Threshold Dynamical Systems (1305.4599v1)

Published 20 May 2013 in math.DS

Abstract: A broad range of nonlinear processes over networks are governed by threshold dynamics. So far, existing mathematical theory characterizing the behavior of such systems has largely been concerned with the case where the thresholds are static. In this paper we extend current theory of finite dynamical systems to cover dynamic thresholds. Three classes of parallel and sequential dynamic threshold systems are introduced and analyzed. Our main result, which is a complete characterization of their attractor structures, show that sequential systems may only have fixed points as limit sets whereas parallel systems may only have period orbits of size at most two as limit sets. The attractor states are characterized for general graphs and enumerated in the special case of paths and cycle graphs; a computational algorithm is outlined for determining the number of fixed points over a tree. We expect our results to be relevant for modeling a broad class of biological, behavioral and socio-technical systems where adaptive behavior is central.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.