Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Non-uniform FFT for the finite element computation of the micromagnetic scalar potential (1305.3162v2)

Published 14 May 2013 in physics.comp-ph and math.NA

Abstract: We present a quasi-linearly scaling, first order polynomial finite element method for the solution of the magnetostatic open boundary problem by splitting the magnetic scalar potential. The potential is determined by solving a Dirichlet problem and evaluation of the single layer potential by a fast approximation technique based on Fourier approximation of the kernel function. The latter approximation leads to a generalization of the well-known convolution theorem used in finite difference methods. We address it by a non-uniform FFT approach. Overall, our method scales O(M + N + N log N) for N nodes and M surface triangles. We confirm our approach by several numerical tests.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.