Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adaptive Metropolis-Hastings Sampling using Reversible Dependent Mixture Proposals (1305.2634v2)

Published 12 May 2013 in stat.ME

Abstract: This article develops a general-purpose adaptive sampler that approximates the target density by a mixture of multivariate t densities. The adaptive sampler is based on reversible proposal distributions each of which has the mixture of multivariate t densities as its invariant density. The reversible proposals consist of a combination of independent and correlated steps that allow the sampler to traverse the parameter space efficiently as well as allowing the sampler to keep moving and locally exploring the parameter space. We employ a two-chain approach, in which a trial chain is used to adapt the proposal densities used in the main chain. Convergence of the main chain and a strong law of large numbers are proved under reasonable conditions, and without imposing a Diminishing Adaptation condition. The mixtures of multivariate t densities are fitted by an efficient Variational Approximation algorithm in which the number of components is determined automatically. The performance of the sampler is evaluated using simulated and real examples. Our autocorrelated framework is quite general and can handle mixtures other than multivariate t.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.