Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Two-dimensional intra-band solitons in lattice potentials with local defects and self-focusing nonlinearity (1305.1834v1)

Published 8 May 2013 in physics.optics, nlin.PS, and quant-ph

Abstract: It is commonly known that stable bright solitons in periodic potentials, which represent gratings in photonics/plasmonics, or optical lattices in quantum gases, exist either in the spectral semi-infinite gap (SIG) or in finite bandgaps. Using numerical methods, we demonstrate that, under the action of the cubic self-focusing nonlinearity, defects in the form of "holes" in two-dimensional (2D) lattices support continuous families of 2D solitons \textit{embedded} into the first two Bloch bands of the respective linear spectrum, where solitons normally do not exist. The two families of the \textit{embedded defect solitons} (EDSs) are found to be continuously linked by the branch of \textit{gap defect solitons} (GDSs) populating the first finite bandgap. Further, the EDS branch traversing the first band links the GDS family with the branch of regular defect-supported solitons populating the SIG. Thus, we construct a continuous chain of regular, embedded, and gap-mode solitons ("superfamily") threading the entire bandgap structure considered here. The EDSs are stable in the first Bloch band, and partly stable in the second. They exist with the norm exceeding a minimum value, hence they do not originate from linear defect modes. Further, we demonstrate that double, triple and quadruple lattice defects support stable dipole-mode solitons and vortices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.