Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geometric Invariant Theory and Roth's Theorem (1305.0926v3)

Published 4 May 2013 in math.AG and math.NT

Abstract: We present a proof of Thue-Siegel-Roth's Theorem (and its more recent variants, such as those of Lang for number fields and that "with moving targets" of Vojta) as an application of Geometric Invariant Theory (GIT). Roth's Theorem is deduced from a general formula comparing the height of a semi-stable point and the height of its projection on the GIT quotient. In this setting, the role of the zero estimates appearing in the classical proof is played by the geometric semi-stability of the point to which we apply the formula.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.