Papers
Topics
Authors
Recent
Search
2000 character limit reached

Surface waves in a deformed isotropic hyperelastic material subject to an isotropic internal constraint

Published 24 Apr 2013 in cond-mat.soft | (1304.6751v1)

Abstract: An isotropic elastic half space is prestrained so that two of the principal axes of strain lie in the bounding plane, which itself remains free of traction. The material is subject to an isotropic constraint of arbitrary nature. A surface wave is propagated sinusoidally along the bounding surface in the direction of a principal axis of strain and decays away from the surface. The exact secular equation is derived by a direct method for such a principal surface wave; it is cubic in a quantity whose square is linearly related to the squared wave speed. For the prestrained material, replacing the squared wave speed by zero gives an explicit bifurcation, or stability, criterion. Conditions on the existence and uniqueness of surface waves are given. The bifurcation criterion is derived for specific strain energies in the case of four isotropic constraints: those of incompressibility, Bell, constant area, and Ericksen. In each case investigated, the bifurcation criterion is found to be of a universal nature in that it depends only on the principal stretches, not on the material constants. Some results related to the surface stability of arterial wall mechanics are also presented.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.