Papers
Topics
Authors
Recent
2000 character limit reached

Finite amplitude inhomogeneous waves in Mooney-Rivlin viscoelastic solids (1304.6748v1)

Published 24 Apr 2013 in cond-mat.soft

Abstract: New exact solutions are exhibited within the framework of finite viscoelasticity. More precisely, the solutions correspond to finite-amplitude, transverse, linearly-polarized, inhomogeneous motions superposed upon a finite homogeneous static deformation. The viscoelastic body is composed of a Mooney-Rivlin viscoelastic solid, whose constitutive equation consists in the sum of an elastic part (Mooney-Rivlin hyperelastic model) and a viscous part (Newtonian viscous fluid model). The analysis shows that the results are similar to those obtained for the purely elastic case; inter alia, the normals to the planes of constant phase and to the planes of constant amplitude must be orthogonal and conjugate with respect to the B-ellipsoid, where B is the left Cauchy-Green strain tensor associated with the initial large static deformation. However, when the constitutive equation is specialized either to the case of a neo-Hookean viscoelastic solid or to the case of a Newtonian viscous fluid, a greater variety of solutions arises, with no counterpart in the purely elastic case. These solutions include travelling inhomogeneous finite-amplitude damped waves and standing damped waves.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.