Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Reaction-diffusion systems with constant diffusivities: conditional symmetries and form-preserving transformations (1304.6595v3)

Published 24 Apr 2013 in math-ph and math.MP

Abstract: Q-conditional symmetries (nonclassical symmetries) for a general class of two-component reaction-diffusion systems with constant diffusivities are studied. Using the recently introduced notion of Q-conditional symmetries of the first type (R. Cherniha J. Phys. A: Math. Theor., 2010. vol. 43., 405207), an exhaustive list of reaction-diffusion systems admitting such symmetry is derived. The form-preserving transformations for this class of systems are constructed and it is shown that this list contains only non-equivalent systems. The obtained symmetries permit to reduce the reaction-diffusion systems under study to two-dimensional systems of ordinary differential equations and to find exact solutions. As a non-trivial example, multiparameter families of exact solutions are explicitly constructed for two nonlinear reaction-diffusion systems. A possible interpretation to a biologically motivated model is presented.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.