Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Counting generalized Dyck paths (1304.5595v1)

Published 20 Apr 2013 in math.CO

Abstract: The Catalan number has a lot of interpretations and one of them is the number of Dyck paths. A Dyck path is a lattice path from $(0,0)$ to $(n,n)$ which is below the diagonal line $y=x$. One way to generalize the definition of Dyck path is to change the end point of Dyck path, i.e. we define (generalized) Dyck path to be a lattice path from $(0,0)$ to $(m,n) \in \mathbb{N}2$ which is below the diagonal line $y=\frac{n}{m}x$, and denote by $C(m,n)$ the number of Dyck paths from $(0,0)$ to $(m,n)$. In this paper, we give a formula to calculate $C(m,n)$ for arbitrary $m$ and $n$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube