Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised model-free representation learning (1304.4806v4)

Published 17 Apr 2013 in cs.LG, q-bio.QM, and stat.ML

Abstract: Numerous control and learning problems face the situation where sequences of high-dimensional highly dependent data are available but no or little feedback is provided to the learner, which makes any inference rather challenging. To address this challenge, we formulate the following problem. Given a series of observations $X_0,\dots,X_n$ coming from a large (high-dimensional) space $\mathcal X$, find a representation function $f$ mapping $\mathcal X$ to a finite space $\mathcal Y$ such that the series $f(X_0),\dots,f(X_n)$ preserves as much information as possible about the original time-series dependence in $X_0,\dots,X_n$. We show that, for stationary time series, the function $f$ can be selected as the one maximizing a certain information criterion that we call time-series information. Some properties of this functions are investigated, including its uniqueness and consistency of its empirical estimates. Implications for the problem of optimal control are presented.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.