Analytic Continuation of the Doubly-periodic Barnes Zeta Function (1304.4509v1)
Abstract: The aim of this work is to study the analytic continuation of the doubly-periodic Barnes zeta function. By using a suitable complex integral representation as a starting point we find the meromorphic extension of the doubly periodic Barnes zeta function to the entire complex plane in terms of a real integral containing the Hurwitz zeta function and the first Jacobi theta function. These allow us to explicitly give expressions for the derivative at all non-positive integer points.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.