Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees (1304.4132v2)
Abstract: We prove that there exist infinite families of regular bipartite Ramanujan graphs of every degree bigger than 2. We do this by proving a variant of a conjecture of Bilu and Linial about the existence of good 2-lifts of every graph. We also establish the existence of infinite families of `irregular Ramanujan' graphs, whose eigenvalues are bounded by the spectral radius of their universal cover. Such families were conjectured to exist by Linial and others. In particular, we prove the existence of infinite families of (c,d)-biregular bipartite graphs with all non-trivial eigenvalues bounded by sqrt{c-1}+sqrt{d-1}, for all c, d \geq 3. Our proof exploits a new technique for demonstrating the existence of useful combinatorial objects that we call the "method of interlacing polynomials'".
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.