Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

GPU Acclerated Automated Feature Extraction from Satellite Images (1304.3992v1)

Published 15 Apr 2013 in cs.DC and cs.CV

Abstract: The availability of large volumes of remote sensing data insists on higher degree of automation in feature extraction, making it a need of the hour.The huge quantum of data that needs to be processed entails accelerated processing to be enabled.GPUs, which were originally designed to provide efficient visualization, are being massively employed for computation intensive parallel processing environments. Image processing in general and hence automated feature extraction, is highly computation intensive, where performance improvements have a direct impact on societal needs. In this context, an algorithm has been formulated for automated feature extraction from a panchromatic or multispectral image based on image processing techniques. Two Laplacian of Guassian (LoG) masks were applied on the image individually followed by detection of zero crossing points and extracting the pixels based on their standard deviation with the surrounding pixels. The two extracted images with different LoG masks were combined together which resulted in an image with the extracted features and edges. Finally the user is at liberty to apply the image smoothing step depending on the noise content in the extracted image. The image is passed through a hybrid median filter to remove the salt and pepper noise from the image. This paper discusses the aforesaid algorithm for automated feature extraction, necessity of deployment of GPUs for the same; system-level challenges and quantifies the benefits of integrating GPUs in such environment. The results demonstrate that substantial enhancement in performance margin can be achieved with the best utilization of GPU resources and an efficient parallelization strategy. Performance results in comparison with the conventional computing scenario have provided a speedup of 20x, on realization of this parallelizing strategy.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube