Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Advancements in Feature Extraction Recognition of Medical Imaging Systems Through Deep Learning Technique (2406.18549v1)

Published 23 May 2024 in eess.IV and cs.CV

Abstract: This study introduces a novel unsupervised medical image feature extraction method that employs spatial stratification techniques. An objective function based on weight is proposed to achieve the purpose of fast image recognition. The algorithm divides the pixels of the image into multiple subdomains and uses a quadtree to access the image. A technique for threshold optimization utilizing a simplex algorithm is presented. Aiming at the nonlinear characteristics of hyperspectral images, a generalized discriminant analysis algorithm based on kernel function is proposed. In this project, a hyperspectral remote sensing image is taken as the object, and we investigate its mathematical modeling, solution methods, and feature extraction techniques. It is found that different types of objects are independent of each other and compact in image processing. Compared with the traditional linear discrimination method, the result of image segmentation is better. This method can not only overcome the disadvantage of the traditional method which is easy to be affected by light, but also extract the features of the object quickly and accurately. It has important reference significance for clinical diagnosis.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com