An accelerated CLPSO algorithm (1304.3892v1)
Abstract: The particle swarm approach provides a low complexity solution to the optimization problem among various existing heuristic algorithms. Recent advances in the algorithm resulted in improved performance at the cost of increased computational complexity, which is undesirable. Literature shows that the particle swarm optimization algorithm based on comprehensive learning provides the best complexity-performance trade-off. We show how to reduce the complexity of this algorithm further, with a slight but acceptable performance loss. This enhancement allows the application of the algorithm in time critical applications, such as, real-time tracking, equalization etc.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.