2000 character limit reached
Fourier-Mukai Transforms and Bridgeland Stability Conditions on Abelian Threefolds (1304.3887v4)
Published 14 Apr 2013 in math.AG
Abstract: We show that the construction of Bayer, Bertram, Macri and Toda gives rise to a Bridgeland stability condition on a principally polarized abelian threefold with Picard rank one by establishing their conjectural generalized Bogomolov-Gieseker inequality for certain tilt stable objects. We do this by proving that a suitable Fourier-Mukai transform preserves the heart of a particular conjectural stability condition. We also show that the only reflexive sheaves with zero first and second Chern classes are the flat line bundles.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.