Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extension of hidden markov model for recognizing large vocabulary of sign language

Published 11 Apr 2013 in cs.CL | (1304.3265v1)

Abstract: Computers still have a long way to go before they can interact with users in a truly natural fashion. From a users perspective, the most natural way to interact with a computer would be through a speech and gesture interface. Although speech recognition has made significant advances in the past ten years, gesture recognition has been lagging behind. Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Statements dealing with sign language occupy a significant interest in the Automatic Natural Language Processing (ANLP) domain. In this work, we are dealing with sign language recognition, in particular of French Sign Language (FSL). FSL has its own specificities, such as the simultaneity of several parameters, the important role of the facial expression or movement and the use of space for the proper utterance organization. Unlike speech recognition, Frensh sign language (FSL) events occur both sequentially and simultaneously. Thus, the computational processing of FSL is too complex than the spoken languages. We present a novel approach based on HMM to reduce the recognition complexity.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.