Papers
Topics
Authors
Recent
Search
2000 character limit reached

How Hard is Counting Triangles in the Streaming Model

Published 4 Apr 2013 in cs.DS | (1304.1458v1)

Abstract: The problem of (approximately) counting the number of triangles in a graph is one of the basic problems in graph theory. In this paper we study the problem in the streaming model. We study the amount of memory required by a randomized algorithm to solve this problem. In case the algorithm is allowed one pass over the stream, we present a best possible lower bound of $\Omega(m)$ for graphs $G$ with $m$ edges on $n$ vertices. If a constant number of passes is allowed, we show a lower bound of $\Omega(m/T)$, $T$ the number of triangles. We match, in some sense, this lower bound with a 2-pass $O(m/T{1/3})$-memory algorithm that solves the problem of distinguishing graphs with no triangles from graphs with at least $T$ triangles. We present a new graph parameter $\rho(G)$ -- the triangle density, and conjecture that the space complexity of the triangles problem is $\Omega(m/\rho(G))$. We match this by a second algorithm that solves the distinguishing problem using $O(m/\rho(G))$-memory.

Citations (56)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.