A Direct Sampler for G-Wishart Variates (1304.1350v1)
Abstract: The G-Wishart distribution is the conjugate prior for precision matrices that encode the conditional independencies of a Gaussian graphical model. While the distribution has received considerable attention, posterior inference has proven computationally challenging, in part due to the lack of a direct sampler. In this note, we rectify this situation. The existence of a direct sampler offers a host of new possibilities for the use of G-Wishart variates. We discuss one such development by outlining a new transdimensional model search algorithm--which we term double reversible jump--that leverages this sampler to avoid normalizing constant calculation when comparing graphical models. We conclude with two short studies meant to investigate our algorithm's validity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.