Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Architecture for Probabilistic Concept-Based Information Retrieval (1304.1128v1)

Published 27 Mar 2013 in cs.AI

Abstract: While concept-based methods for information retrieval can provide improved performance over more conventional techniques, they require large amounts of effort to acquire the concepts and their qualitative and quantitative relationships. This paper discusses an architecture for probabilistic concept-based information retrieval which addresses the knowledge acquisition problem. The architecture makes use of the probabilistic networks technology for representing and reasoning about concepts and includes a knowledge acquisition component which partially automates the construction of concept knowledge bases from data. We describe two experiments that apply the architecture to the task of retrieving documents about terrorism from a set of documents from the Reuters news service. The experiments provide positive evidence that the architecture design is feasible and that there are advantages to concept-based methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.