Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rough sets determined by tolerances (1303.6332v2)

Published 25 Mar 2013 in math.RA

Abstract: We show that for any tolerance $R$ on $U$, the ordered sets of lower and upper rough approximations determined by $R$ form ortholattices. These ortholattices are completely distributive, thus forming atomistic Boolean lattices, if and only if $R$ is induced by an irredundant covering of $U$, and in such a case, the atoms of these Boolean lattices are described. We prove that the ordered set $\mathit{RS}$ of rough sets determined by a tolerance $R$ on $U$ is a complete lattice if and only if it is a complete subdirect product of the complete lattices of lower and upper rough approximations. We show that $R$ is a tolerance induced by an irredundant covering of $U$ if and only if $\mathit{RS}$ is an algebraic completely distributive lattice, and in such a situation a quasi-Nelson algebra can be defined on $\mathit{RS}$. We present necessary and sufficient conditions which guarantee that for a tolerance $R$ on $U$, the ordered set $\mathit{RS}_X$ is a lattice for all $X \subseteq U$, where $R_X$ denotes the restriction of $R$ to the set $X$ and $\mathit{RS}_X$ is the corresponding set of rough sets. We introduce the disjoint representation and the formal concept representation of rough sets, and show that they are Dedekind--MacNeille completions of $\mathit{RS}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube